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Abstract : The trimethylsilyl enol ether of (3,5-heptadien-2-one) tricarbonyliron 1 undergoes a highly 
stereoselective cross aldol reaction with TiCl4-coordinated I]-o.methoxybenzyloxypropanal yielding 
after deprotection the ketodiol complex 9. Direct decomplexation or decomplexation after totally metal 
induced stereoselecfive reduction to the triol 10, led to Streptenols C and D. The natural dextrorotatory 
enantiomers were obtained from the readily available pure (+)-1. © 1997 Elsevier Science Ltd. 

Linear conjugated dienones coordinated to iron as tricarbonyliron complexes are converted highly 

stereoselectively into complexes of 1-dienols by reduction with metal hydrides ( ~  endo alcohols) 2a or reaction 

with organometallic reagents 2b. This provides easy access to optically active secondary and tertiary alcohols 

when the starting material is a resolved chiral complex 2b. (1-acetyldiene)tricarbonyliron complexes are 

particularly interesting in this context since they undergo high yield aldol condensation reactions with 

aldehydes, leading thus to chiral 1,3-diols 1. Depending on the nature of the aldehyde and the conditions used, 

the reaction proceeds more or less diastereoselectively, but in general yields pure diastereomers owing to their 

efficient separation by simple silica gel column chromatography. 

We investigated several modalities of  the aldol condensation reaction of  (dienone)tricarbonyliron 

complexes as a key step for the synthesis of  chiral polyols, differing in the way the optical activity was 

introduced : 

resolution of  the starting (1-acetyl acyclic diene) tricarbonyliron (this paper) 

use of  an optically active hydroxyaldehyde, allowing at the same time the resolution of the racemic 

starting complex 

- use of  an enantiomerically pure complex, obtained by completely stereoselective complexation of an 

optically active ligand (natural product). 

In this paper, we describe an efficient synthesis of two metabolites from Streptomyces Fimbriatus,  the 

Streptenols C [(+)-(3S,6E,8E)-deca-6,8-dien-5-one-l,3-diol] and D [(+)-(3S,5R,6E,8E)-deca-6,8-diene-l,3,5- 

triol] 3. 
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For this synthesis, the aldol condensation reaction was to be performed between (3,5-heptadien-2-one) 

tricarbonyliron ! and an alcohol-protected I~-hydroxypropanal. It quickly became apparent that the greatest 

diastereoselectivity was obtained using Mukaiyama conditions 4, by chelation of the ~-alkoxyaldehyde with 

TiC14 prior to reaction with the silyl enol ether 5. Of several protecting groups tested, o.methoxybenzyl ether 

(OMB) proved to be the most effective here, in terms of yield, diastereoselectivity and deprotection 6. 

The optically active starting complex (+)-1 ([t~] D = +377, ee > 96 %) of known 2b absolute configuration 

(3S,6R) was obtained in 80 % yield by reaction of the readily available (+)-complex of sorbic acid 7 with 

Meldrum's acid, followed by acidic cleavage 8. By reaction with trimethylsilyl triflate and triethylamine in 

CH2C12, the silyl enol ether 2 was obtained nearly quantitatively. After purification by evaporation of the 

solvent, precipitation with ether of  the triethylammonium salts, decantation and elimination of the solvent, it 

was added in solution in CH2Cl 2 to an equimolecular mixture of  the protected fl-hydroxypropanal 3 9and 

TiCl 4 in CH2CI 2 at -78 ° C. With this order of addition, a mixture of two easily separable (SiO 2 

chromatography) diastereomeric ketols (+)-4 and (+)-5 l0 was obtained in the ratio 1:10 (ratio of isolated 

yields). The minor less polar diastereomer (+)-4 and the major more polar diastereomer (+)-5 were reduced 

(100 % ~ endo alcohols) and converted into the acetonides of the obtained 1,3-diols. 

: S O i ~- ~ ~ O T M S -  R 

- quant. F'e(CO)3 
(+)-1 2 

: 0 ~ 0  OOMB 
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(+)4 

l iii 
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Fe(CO)3 - " - ~e(CO)3 v s v 
C , 4 ~ X C ,  v O~Me 

CI CI 

3 (1.1 eq/(+)- l )  (+)-4 (8%/ (+)-1) (+)-5 (79%/ (+)-1) 

i :TMSOTf(I.leq),Et3N(l.5eq),CH2CI2,-78°C---~+20°C ii: 1) 2,CH2C12,-78°C 2)NaHCO3, H20 

iii : BH3oMe2S, THF, 20°C, 58 % iv : Me2C(OMe)2, acetone, pTsOH, 20°C, 71% 

This allowed the unambiguous assignment of their configurations by examination of the 13C NMR 

spectra, using the method of Rychnovsky et al.tl .  The major ketol (+)-5 yielded the diol (+)-6 whose 

acetonide (+)-7 showed nearly identical ~ values for the acetal methyl groups (24.4 and 24.5 ppm), and is 

therefore of the anti configuration. 

The deprotection of the primary alcohol function of (+)-5 was achieved by intermediate formation of the 

acetal (+)-812, followed by acidic cleavage, to give the complexed ketodiol (+)-910. Remarkably, although 

tricarbonyliron complexes are prone to oxidative decomplexation, the use of the oxidant DDQ (2,3-dichloro- 

5,6-dicyano-l,4-benzoquinone) as a reagent for the formation of the acetal (+)-8 was not a problem here 13, the 

overall yield for (+)-9 reaching 73 %. 
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• OH OOMB : MeO 0 /  ~0 " ~  : 0 OH OH 

(+)-S 1+)-8 (+)-9 

i : DDQ (1.2 eq), CH2CI 2, 20°C ii : PPTS, acetonegrI20, 60 ° C. 

From the complex (+)-9, Streptenols C and D were obtained by decomplexation with Ce TM ammonium 

nitrate (CAN), directly in the case of the former 14, and after completely metal induced stereoselective 

reduction to the triol complex (+)-10 l0 for the latter. 

O OH O.H 
" 

1+)-9 1 i 40% 

Streptenol C 

1) BH3.MegS (1 eq) 
THF, 20°C 

2) MeOH 
94* 

OH OH OH 
S ' R  

(+)-10 i ~ 74% 

v 
Streptenol D 

i : 1) CAN (5 eq), MeCN/H20, 0°C 2) NaHCO3/I-I20 

The spectral data of the synthetic Streptenols C and D are consistent with those of the natural 

products 3a-c. The [(X]D of our Streptenol C ([u] D = +24) is also in good agreement with one value reported in 

the literature ([(X]D = 23.4)3a, but two other values are given in the literature (+49.33b and +623c) and the 

situation as to the optical purity is somewhat confusing. However, since the complex (+)-9 is a pure 

diastereomer and since partial racemization at the level of the metal-diene attachment is highly improbable, we 

feel confident that this complex must be nearly optically pure. If partial racemization intervenes, it could only 

be during the final decomplexation step, which is also unlikely (vide infra). The situation is even more 

confusing in the case of Streptenol D. Our [0t] D value is low compared to the highest literature values 

(+4/+8.23b and +353c), but [ ¢t] D values of polyhydroxylated compounds are not always reliable. We therefore 

prepared the known triacetate (+)-11, directly from our Streptenol D and via the complex (+)-12. The 

measured [ct] D were +10 and +15 respectively, which compare well with the literature value of +11.43b. 

(+)-10 

i ii 
Streptenol O 

/ 7 4 %  45"/. NN~ k 

~ OAc OAc OAc 
ii S -- R i J 

60*/. 78*/. 

(+1-12 
i : l) CAN (5cq), MeCN/H20, 0°C 2) NaHCO 3, H20 

OAc O A c  O A c  

(+)-11 

ii : Ac20, Et3N, DMAP cat., CH2CI 2, 20°C 

We can therefore conclude that the Streptenols obtained in our iron mediated synthesis are of at least the same 

optical purity as the natural products, and are probably nearly enantiomerically pure. 
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